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Abstract: Extraordinary floods are linked with heavy rainstorm systems. Among various systems,
their synoptic features can be quite different. The understanding of extreme rainstorms by their
causative processes may assist in flood frequency analysis and support the evaluation of any changes
in flood occurrence and magnitudes. This paper aims to identify the most dominant meteorological
factors for extreme rainstorms, using the ERA5 hourly reanalysis dataset in Henan, central China
as a case study. Past 72 h extreme precipitation events are investigated, and six potential factors are
considered in this study, including precipitable water (PW), the average temperature (Tavg) of and
the temperature difference (Tdiff) between the value at 850 hPa and 500 hPa, relative humidity (RH),
convective available potential energy (CAPE), and vertical wind velocity (Wind). The drivers of each
event and the dominant factor at a given location are identified using the proposed metrics based on
the cumulative distribution function (CDF). In Henan, central China, Wind and PW are dominant
factors in summer, while CAPE and Wind are highly related factors in winter. For Zhengzhou city
particularly, Wind is the key driver for summer extreme rainstorms, while CAPE plays a key role in
winter extreme precipitation events. It indicates that the strong transport of water vapor in summer
and atmospheric instability in winter should receive more attention from the managers and planners
of water resources. On the contrary, temperature-related factors have the least contribution to the
occurrence of extreme events in the study area. The analysis of dominant factors can provide insights
for further flood estimations and forecasts.

Keywords: extreme rainstorms; driver identification; dominant factor; ERA5

1. Introduction

According to the IPCC Sixth Assessment Report, global warming will lead to the
increase of extreme weather events; for example, the increase of extremely hot days and
heatwaves is very likely to occur on almost all lands, and extreme precipitation magnitude
and frequency are very likely to rise in many areas [1]. Extreme precipitation events have
a very strong destructive effect. For instance, on 17–21 July 2021, an extremely heavy
rainstorm hit Zhengzhou city in Henan, central China. The whole city was flooded, the
traffic system was paralyzed, and power was interrupted for more than weeks. The
estimated economic loss exceeded CNY 120 billion, with hundreds of lives lost in the end.
Extraordinary floods are linked with heavy rainstorm systems, and their synoptic features
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differ from each other. Therefore, the understanding of heavy rainstorm floods by their
causative processes may assist in flood frequency analysis and support the evaluation of
any changes in flood occurrence and magnitudes [2].

The method of using numerical weather prediction (NWP) models to simulate the
physical process of storm formation and estimate design rainfalls can be found in the
National Research Council [3]. This approach links atmospheric processes with rainfall in a
quantitative way. Abbs [4] investigated and estimated the probable maximum precipitation
(PMP) with an NWP model, and the key message from this study and other studies [5,6] is
that the linear assumption between precipitation and available moisture (i.e., precipitable
water) of conventional PMP estimates [7] was not always valid. Recently, some researchers
used forecasts from NWP models or regional climate models (RCMs) to estimate PMP and
pointed out that climate change may affect the estimates of PMPs [8–14]. Other studies
applied NWP models to explore the cause of specific extreme precipitation events, particu-
larly in urban areas, such as Mumbai, India, in 2005 [15]; Nashville, Tennessee, the United
States, in 2010 [16]; Beijing, China, in July 2012 [17]; Guangzhou, China, in July 2017 [18];
Istanbul, Turkey, in 2017 [19]; North-Rhine Westphalia and adjacent Rhineland-Palatinate,
Germany, in 2021 [20]; and Henan, China, in July 2021 [21]. Furthermore, some studies
have systematically assessed the relationship between several atmospheric variables (e.g.,
moisture, wind convergence, and wind vertical velocity) and convective rainfall state [22],
peak rainfall intensity [23], or sustained rainfall deficit [24,25]. These studies provided a
systematic analysis of the relationship between extreme precipitation and meteorological
factors, but most of them only investigated their qualitative relationship for specific events
at a given location and did not take enough account of the spatial patterns.

The analysis of spatial patterns necessitates the proper method and high-resolution
data. Chen and Hossain [10] investigated the concurrent synoptic features for the ex-
treme rainstorms over the continental United States at a coarse spatio-temporal scale using
regional (NARR) and global (ERA-Interim) reanalysis products, which indicated the use-
fulness of atmospheric reanalysis products and provided a practicable way to explore the
spatial variations of the relation between atmosphere variables and extreme rainstorms.
Recently, a new generation of ERA (ERA5) data was released, providing hourly estimates of
a mass of atmospheric, land, and oceanic climate variables with 30 km grid resolution [26].
Based on this dataset, the relations can be evaluated at a high spatio-temporal resolution,
especially over a localized region. Therefore, this paper applies the method of Chen and
Hossain [10] and ERA5 data to analyze the relations between the meteorological factors
and extreme rainfall events quantitively and investigates the main factors influencing
rainstorms in Henan, central China.

While studies on extreme rainfall events have mostly focused on a specific location
with historical observations, this study takes advantage of a high spatial-temporal reso-
lution data–ERA5 to analyse the spatial patterns of the key driver for the extreme rainfall
and explore the pattern variations in different seasons. The results can provide a more
systematic and deeper understanding of the synoptic causes of extreme precipitation, which
helps to identify the relevant mechanisms from a regional perspective and improve the
forecast accuracy of the extreme rainfall.

The paper is organized as follows: Section 2 introduces the study area, ERA5 reanalysis
data, and the diagnosis factors used in this study. Section 3 presents the methods to identify
the driver of an extreme event and derive the domain factor at a demo location. Section 4
shows the analysis results, which are the spatial distributions of the dominant factors on
extreme rainstorms in the entire period or different seasons from 1981 to 2021. Conclusions
are summarized in Section 5.

2. Study Area and Dataset

Henan province is located in the central part of China, as shown in Figure 1. This
region experienced a severe flood caused by extraordinary heavy rainfall in 1975 [27], and it
was hit by another extreme rainstorm recently on 18–22 July 2021. On 20 July 2021, the daily
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rainfall and hourly rainfall of many national meteorological observatories in Zhengzhou
city (represented by red polygon in Figure 1) exceeded the historical largest value since the
meteorological record began [21]. In Henan province, more than 65% of the precipitation
falls in summer, and most of them are short-duration heavy precipitation. This is also
the feature of most watersheds in China. Therefore, this area can be regarded as a classic
example to investigate the atmosphere characteristics of extreme storm events in China.
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Figure 1. The study area of Henan province and Zhengzhou city in central China.

This study applies ERA5 data to implement the investigation. ERA5 data are the latest
generation of ECMWF global reanalysis product. From ERA5 data, hourly precipitation
estimates, and six atmospheric variables, including precipitable water (PW), the tempera-
ture at 850 hPa and 500 hPa (T850 and T500), relative humidity (RH), convective available
potential energy (CAPE), and vertical wind velocity (Wind) at 700 hPa are obtained. They
cover the period of 1981–2021 and the region represented by a blue box in Figure 1. Average
temperature (Tavg = T850 + T500

2 ) and temperature difference (Tdiff = T850 − T500) are
computed based on the temperature at two different pressure levels. In the end, CAPE, PW,
Wind, RH, Tavg, and Tdiff are considered as potential meteorological factors in this study,
and these variables are often used in extreme weather events [10,22,28].

3. Methodology

In order to find the dominant meteorological factor at a given location, we first needed
to identify the driver for each extreme event. The largest 50 rainfall events with a duration
of 72 h (i.e., 3 days) from 1981 to 2021 were extracted and used for analysis. Once drivers
of all 50 events were identified, the percentage of extreme events that are linked to each
driver variable was calculated, and the meteorological variable with the greatest percentage
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was defined as the dominant factor at the specific location. The following subsections will
introduce the metrics used to identify the driver of each extreme event and the dominant
factor of a certain region. The details are explained using the extracted extreme events from
ERA5 data at a demo grid near Zhengzhou city (the blue triangle in Figure 1).

3.1. Extraction of Extreme Events

Analyzing the hourly precipitation data in the entire historic period at a demo grid,
the 50 extreme events corresponding to the first 50 largest 72 h accumulated precipitation
were selected. Figure 2 demonstrates the time series of precipitation (black line) and the
selected extreme events. Each red bar represents one extreme event, while the order of
the five largest events is given by a red number. The start time of each event and their
accumulated precipitation amount is listed in Table 1.
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Figure 2. Hourly precipitation (black line) and the 50 highest extreme rainstorms at the demo
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largest events.

It should be noted that the rainfall amount in this grid is underestimated by ERA5. For
instance, on 20 July 2021, according to the observation data, the highest hourly rainfall in
Zhengzhou city is over 200 mm, but in the ERA5 data, the value in this grid is only 22.4 mm.
Some studies focusing on the post-processing of the rainfall data [29–32] may help to deal
with this underestimation problem, but this study still implements the analysis on the
raw ERA5 data without treatment. If this method is implemented on the more precise
observations or post-processing data, the results might be different, but the difference will
not be significant. The extreme event is the definition for the relative relationship and
the absolute value will not influence the probability of event occurrence. Furthermore,
although the total rainfall amount is underestimated, the ERA5 product correctly simulates
the timing of the Zhengzhou extreme event beginning on 18 July 2021, which ensures the
correct duration of the extreme events.
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Table 1. List of the largest 50 extreme events with identified drivers at the demo grid.

Event Order Start Time
Accumulated 72 h Precipitation

(mm)

M 1

CAPE PW Wind RH Tavg Tdiff

1 2021-07-18 21:00:00 234.92 0 1 1 1 0 0
2 2000-07-03 00:00:00 223.94 0 1 1 1 0 0
3 2018-08-16 07:00:00 182.18 0 1 1 0 0 0
4 1984-07-16 07:00:00 150.53 1 1 1 1 0 0
5 1999-07-03 15:00:00 149.99 0 1 1 1 0 0
6 2009-07-20 00:00:00 144.32 1 1 1 0 1 0
7 2021-08-19 14:00:00 139.27 0 1 1 1 0 0
8 2010-07-16 04:00:00 130.87 0 1 1 1 0 0
9 2021-08-28 03:00:00 125.42 0 1 1 1 0 0

10 2000-08-03 09:00:00 123.12 0 1 1 1 0 0
11 2004-07-14 07:00:00 122.64 0 1 1 1 0 0
12 2000-06-24 23:00:00 120.97 0 1 1 1 0 0
13 1996-08-02 05:00:00 111.64 0 1 1 1 1 0
14 2000-07-12 18:00:00 110.28 0 1 1 1 0 0
15 1990-06-17 02:00:00 109.47 0 1 1 0 0 0
16 1995-07-22 09:00:00 109.13 1 1 1 1 1 0
17 1993-04-29 06:00:00 109.00 0 0 1 1 0 0
18 1990-08-13 02:00:00 109.00 0 1 1 1 0 0
19 1984-09-21 14:00:00 106.25 0 0 1 1 0 0
20 2010-09-04 01:00:00 105.82 0 1 1 1 0 0
21 1982-08-11 15:00:00 101.03 0 1 1 1 0 0
22 2011-09-11 23:00:00 100.94 0 0 1 1 0 0
23 2013-05-24 04:00:00 94.25 0 0 1 1 0 0
24 1998-08-03 11:00:00 93.30 0 1 1 1 1 0
25 2000-06-01 10:00:00 92.92 0 1 0 1 0 0
26 2011-07-31 09:00:00 92.74 0 0 1 1 0 0
27 1990-07-19 11:00:00 90.09 1 1 1 1 1 0
28 2011-09-04 01:00:00 89.85 0 1 0 1 0 0
29 2003-08-27 20:00:00 89.11 0 1 1 0 0 0
30 1984-08-06 07:00:00 88.28 1 1 1 1 0 0
31 2005-06-24 17:00:00 88.15 0 1 1 0 0 0
32 1983-08-09 11:00:00 85.46 0 1 1 1 0 0
33 1983-09-04 22:00:00 85.25 0 1 1 1 0 0
34 2012-07-04 03:00:00 85.16 0 1 1 0 0 0
35 1985-09-13 11:00:00 84.97 0 0 1 0 0 0
36 1983-10-03 03:00:00 84.93 0 0 1 0 0 0
37 2015-06-22 12:00:00 84.71 0 1 1 0 0 0
38 1993-08-12 10:00:00 84.34 0 1 1 1 0 0
39 2008-07-20 08:00:00 84.26 0 1 0 0 0 0
40 1984-09-06 17:00:00 84.18 0 1 1 1 0 0
41 1989-07-04 10:00:00 82.94 0 1 0 1 0 0
42 2006-07-01 10:00:00 82.75 0 1 1 1 1 0
43 2007-07-18 02:00:00 82.00 1 1 1 0 1 0
44 2007-07-03 22:00:00 81.92 0 1 1 1 0 0
45 1987-05-31 06:00:00 81.82 1 0 1 1 0 1
46 1982-08-28 07:00:00 81.56 0 1 1 1 0 0
47 1998-07-14 07:00:00 80.70 1 1 1 1 1 0
48 1997-09-12 03:00:00 79.52 0 0 1 0 0 0
49 2010-08-22 03:00:00 79.25 0 0 1 0 0 0
50 1981-08-09 02:00:00 78.79 0 1 0 1 0 0

Note: 1 M = 1 means the factor is the driver of the extreme rainstorm, while M = 0 means it is not.
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3.2. Driver Identification of an Extreme Event

The concurrence between an extreme synoptic condition and an extreme precipitation
event can be quantified by a metric based on the cumulative distribution function (CDF) of
the hourly values in the entire period. The proposed metric M for an atmospheric variable i
and a storm event j is defined as follows:

Mi
j(θ1, θ2) =

{
1, i f P

(
Xi

j > Xi
θ1

)
≥ θ2

0, otherwise.
(1)

where Xi
j is the hourly value of atmospheric variable i (i represents CAPE, PW, Wind, RH,

Tavg, and Tdiff, respectively, in this study) during the 72 h of the identified storm event j.
Xi

θ1
is the value of the atmospheric variable i corresponding to the CDF of θ1 (θ1 = 0.95 is

adopted in the study), which can be regarded as the threshold of the extreme condition.
For each specific event, the percentage of the atmospheric variable i reaching the extreme
condition (Xi

0.95) can be calculated. If the percentage exceeds θ2 (θ2 = 15% is adopted
in the study), representing that the extreme condition maintains over a certain duration
(72 h × 15% = 10.8 h), then the atmospheric variable i can be identified as the driver of the
extreme event j, and its value of metric M is 1.

Taking the first largest event as an example, Figure 3 presents the cumulative probabil-
ities of all the values (blue lines) and the cumulative probabilities of the values in the first
largest event (red circles) for each atmospheric variable at the demo grid. It clearly shows
that some values of CAPE, PW, Wind, and RH meet the extreme condition (CDF of 95%,
represented by a horizontal red dashed line), and the exceeding percentages are 10%, 100%,
59%, and 67%, repressively. According to θ2 = 15%, PW, Wind, and RH are regarded as the
drivers of the first largest event, and their M values in Table 1 are 1.
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Figure 3. Demonstration of driver identification of the first largest event at the demo grid. The
result of each atmospheric variable is shown in a subfigure with (a) CAPE, (b) PW, (c) Wind, (d) RH,
(e) Tavg, and (f) Tdiff, separately. The blue line presents the cumulative distribution curve (CDF)
of all hourly values in the entire period from 1981 to 2021. The red circles present the cumulative
probabilities of the hourly values during the 72 h after the first largest event began. The CDF of
95% (horizontal red dashed line) is defined as the threshold of the extreme condition.
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3.3. Dominant Factor Analysis at a Given Location

Once the driver for each extreme precipitation event is identified by the metric M,
the dominant factor, F, is defined as the driver with the largest percentage of the extreme
events that are related to the following:

F(θ1, θ2) = i(max(Ri)) (2)

Ri =
∑N

j=1 Mi
j(θ1, θ2)

N
(3)

where N is the total number of extreme events investigated (N = 50 in this study). The
50 largest events at the demo grid are shown in Table 1, including their starting time,
accumulated precipitation, and associated meteorological drivers. In summary, there are 8,
40, 45, 37, 8, and 1 events related to CAPE, PW, Wind, RH, Tavg, and Tdiff, respectively, and
the percentage of the extreme event (R) is 16%, 80%, 90%, 74%, 16%, and 2%, respectively.
Therefore, Wind with the maximum R = 90% is regarded as the dominant factor at the
demo grid.

The above processes demonstrate how the dominant factor at one specific grid is
derived. In the following sections, we will show the spatial variation of dominant factors
when extreme precipitation events are taken from the entire period or different seasons.

4. Results and Discussions
4.1. Spatial Patterns of the Dominant Factor in the Entire Period

As demonstrated in the method section, in order to obtain the dominant factor for
each location, we needed to find drivers for each event and calculate the percentage of
the extreme events that are related to the corresponding driver. Figure 4 presents the
percentage of extreme events that are related to extreme atmospheric variables across
the Henan province. It is clearly shown that PW, Wind, and RH are the most common
drivers for extreme precipitation events in Henan (black polygon), while CAPE and Tavg
are relatively less. There is no obvious link between Tdiff and the occurrence of extreme
precipitation events. PW is the indicator of available moisture in the system, mainly affected
by Tavg and RH. Figure 4 demonstrates that PW and RH have a close spatial pattern and
play a much more significant role in extreme events than Tavg. It illustrates that compared
with the temperature indicator Tavg, the moisture indicators RH and PW are more sensitive
to extreme rainstorm events. The moisture is the determinant of how much rain will fall,
and it is direct to the formation of rainfall. The temperature affects how much moisture
can be contained. The moisture here is potential content and not the actual content. That is
most likely the reason why Tavg has no obvious relation with extreme precipitation events.

Based on the results of Figure 4, the spatial variation of dominant meteorological
factors across the Henan province is shown in Figure 5. It can be seen that most areas,
including Zhengzhou city, are dominated by Wind, while few regions are dominated by
RH or PW. Vertical wind velocity (referred to as Wind) is the velocity between pressure
levels, and the vertical velocity at 700 hPa is most related to precipitation processes [10,23].
Previous studies have shown that the moisture needed for extreme precipitation events
cannot be met by PW [10,33]. Vertical wind velocity, representative of the large-scale
horizontal convergence, draws moisture from the surrounding area to supply the moisture
needed for the extreme event. That is why PW is less dominant than Wind in the formation
of extreme rainfall.
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4.2. Spatial Patterns of the Dominant Factor in Different Seasons

Except for the analysis based on extreme events of the whole year, the dominant factors
were reanalyzed for different seasons to explore a deeper understanding of the causes of the
extreme precipitation. The percentage of extreme events in each season is 4.742% (Spring,
March to May), 82.127% (Summer, June to August), 13.128% (Autumn, September to
November), and 0.003% (Winter, December to February), respectively. Over 80% of extreme
events occur during the summer, while less than 20% of extreme precipitation events mainly
happen in the autumn and spring. Due to the effect of the temperate monsoon climate, it is
expected that the extreme precipitation event in this region is generally concentrated within
the summer season. Therefore, the summer results (Figure 6b) are the most similar to the
yearly based analysis (Figure 4). This also indicates that the dominant factors found here
are stable, and it agrees with the finding in Chen and Hossain [10]. In addition, regarding
the percentage of extreme events that are related to wind and RH, the patterns are stable
across seasons. This is because the two drivers show less seasonal variability, and it is
relatively easier to reach extreme values in all seasons.
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Figure 6 demonstrates that spring, autumn, and summer have similar spatial patterns,
but winter is quite different. The key difference focuses on the patterns of CAPE. As
documented at the ECMWF website, CAPE is a measurement of atmospheric stability
and can be used to assess the potential of convection development. In winter, CAPE is
identified as the driver of extreme precipitation events over the study area (Figure 6d), and
it is also shown in Figure 7 as the dominant factor in the northern part of Henan province,
including Zhengzhou city. However, in summer, CAPE has few effects on extreme events
in Figure 6b. This finding is in agreement with the study of Lepore, Veneziano [34]. Most
of the precipitation in winter comes from snow, and it has a different causative process
from rainstorms in summer. High moisture indicated by PW ensures the initialization of
rainstorms, while an unstable weather system caused by a high CAPE and Wind leads to
snow in winter [10]. Based on the above analyses at a seasonal scale, the seasonal variability
of these physically dominant factors was investigated, and it should be considered in the
trend estimation of extreme precipitation due to the various causative processes.
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Figure 7. Dominant factors of extreme rainstorms across the Henan province in different seasons.
(a) spring; (b) summer; (c) autumn; and (d) winter. The black polygon presents the border of Henan
province, while the red polygon is the boundary of Zhengzhou city.

4.3. Considerations of other Factors

In agreement with this study, other studies also found that precipitable water (PW) is
often related to precipitation extreme events [35], and wind velocity is more likely to be the
dominant factor of summer extreme precipitation events in some regions [10,23]. Besides,
other factors, such as topography [36], urbanization-induced urban heat island and aerosol
effects [37,38], and global climate change [39], also influenced the occurrence of extreme
storms. Compared with variables discussed in this study, those factors are more likely to be
static or show little variations in a long time. However, their effects on the spatial pattern
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are non-negligible and could influence the classification of extreme rainfall events (such as
storms, warm/cold front, or tropical cyclones [40]). Therefore, further study is necessary
regarding the comprehensive effects of the short-term and long-term variability on extreme
precipitation events.

To summarize, it is important to understand how extreme precipitation events are
linked to different types of weather circulation patterns, and reanalysis of data can support
these subsequent studies due to the high temporal and spatial resolutions.

5. Conclusions

This study explores the characteristics of extreme precipitation events over the Henan
province, central China using the latest ERA5 dataset. Over a ~41-y period, the largest
50 rainstorm events with the 72 h duration at each grid cell were extracted. The driver
of these events was identified using the criteria based on the cumulative distribution
function. A single atmospheric variable that controls the largest number of the 50 events
was regarded as the dominant factor. The findings from the results are as follows:

• Over the entire study region, extreme precipitation events mostly happen in summer
(from June to August).

• For the entire period, PW, Wind, and RH are the most common drivers for extreme
precipitation events over the Henan province.

• For the different seasons, across the Henan region, Wind and PW are dominant factors
in summer, while Wind and CAPE are highly related factors in winter. For Zhengzhou
city particularly, Wind is the key driver for summer, while CAPE plays a key role
in winter.

• Temperature-related variables have the lowest contribution to the occurrence of ex-
treme events in the study area.

According to the proposed metric in this study, we can classify each event based on
the various atmospheric variables and then identify the dominant factor. The analysis
of dominant factors can provide insights for further flood estimations and forecasts. For
instance, selecting annual maximum precipitation events with extreme Wind and PW values
will likely identify the events that will maximize a storm. Besides, based on this method,
further studies can be carried out by considering more factors, such as topography and
global warming, to explore more findings on the formation of extreme rainfall and floods.
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